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Outline of this Talk

Tailoring Casimir forces with metamaterials

  What is a metamaterial (MM)?

Brief review of theory and experiments

  Is MM-based Casimir repulsion possible?  

Thermal Casimir force

  First experimental observation of the thermal Casimir force 

Disorder in quantum vacuum

  Casimir-induced localization of matter waves 
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Brief intro to Casimir physics
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The Casimir force

Casimir forces originate from changes in quantum 
vacuum fluctuations imposed by surface boundaries

They were predicted by the Dutch physicist Hendrik 
Casimir in 1948

Dominant interaction in the micron and sub-micron lengthscales

The magnitude and sign of the Casimir force depend on 
the geometry and composition of surfaces

E =
1
2

�

k

�ωk ⇒
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Modern Casimir experiments

 Torsion pendulum

Lamoreaux

 MEMS and NEMS

Capasso, Decca,...

 Atomic force microscope

Onofrio, Mohideen, Iannuzzi, ....

 AFM/MEMS in nanostructures

Chan, Decca
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The Casimir-Polder force

vdW - CP interaction Casimir and Polder (1948)

The interaction energy between a ground-state atom 
and a surface is given by

UCP(RA) =
h̄

c2ε0

∫
∞

0

dξ

2π
ξ2α(iξ) TrG(RA,RA, iξ)

Atomic polarizability:

Scattering Green tensor:

α(ω) = lim
ε→0

2

3h̄

∑

k

ωk0|d0k|2

ω2
k0

− ω2 − iωε

RA

(

∇×∇×−
ω2

c2
ε(r, ω)

)

G(r, r′, ω) = δ(r − r
′)
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The Casimir-Polder force

vdW - CP interaction Casimir and Polder (1948)

The interaction energy between a ground-state atom 
and a surface is given by

UCP(RA) =
h̄

c2ε0

∫
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ξ2α(iξ) TrG(RA,RA, iξ)
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Scattering Green tensor:
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ω2

c2
ε(r, ω)

)

G(r, r′, ω) = δ(r − r
′)

zA ! λA zA ! λANon-retarded (vdW) limit  Retarded (CP) limit

Eg: Ground-state atom near planar surface @ T=0

UvdW(zA) = −

h̄

8πε0

1

z3
A

∫
∞

0

dξ

2π
α(iξ)

ε(iξ) − 1

ε(iξ) + 1
UCP(zA) = −

3h̄cα(0)

8π

1

z4
A

ε0 − 1

ε0 + 1
φ(ε0)
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Modern CP experiments

 Deflection of atoms

Hinds et al (1993)

 Classical/quantum reflection

Aspect et al (1996) Ketterle et al (2006)

 BEC oscillator Cornell et al (2007)
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Metamaterials and Casimir
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Effects of materials 

Reflection matrices (Fresnel formulas for isotropic media):

The Lifshitz formula: Lifshitz (1956)

r
TE,TE

= r
TM,TM ε ↔ µwith

F

A
= 2� Im

� ∞

0

dω

2π

�
d2k�
(2π)2

K3Tr
R1 · R2e2iK3d

1−R1 · R2e2iK3d

K3 =
�

ω2/c2 − k2
�

Relevant frequencies:

0 ≤ ω ≤ min{Ωp, c/d}
�(ω)

ω�Ωp−−−−→ 1 ⇒ rp,p ≈ 0 (Transparent plates)

ω � c/d ⇒ e2iK3d ≈ 0 (Fast oscillations)

�
⇒ F ≈ 0

rTM,TM(ω,k�) =
�(ω)K3 −

�
�(ω)µ(ω)ω2/c2 − k2

�

�(ω)K3 +
�

�(ω)µ(ω)ω2/c2 − k2
�
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Going to imaginary frequencies

F

A
= 2h̄

∫ ∞

0

dξ

2π

∫
d2k‖

(2π)2
K3Tr

R1 · R2e
−2K3d

1 − R1 · R2e−2K3d

Kramers-Kronig (causality) relations: 

�(iξ) = 1 +
2
π

� ∞

0

ω���(ω)
ω2 + ξ2

dω µ(iξ) = 1 +
2
π

� ∞

0

ωµ��(ω)
ω2 + ξ2

dω

The important message is that Casimir is a broad-band frequency phenomenon

Dominant frequencies below the near-infrared/optical 
region of the EM spectrum (gaps d= 200-1000 nm)
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The sign of the Casimir force

F

A
= 2h̄

∫ ∞

0

dξ

2π

∫
d2k‖

(2π)2
K3Tr

R1 · R2e
−2K3d

1 − R1 · R2e−2K3d

The sign of the force is directly connected to the sign of the product of 
the reflection coefficients on the two plates, evaluated at imaginary 
frequencies.  As a rule of thumb, we have (p=TE, TM)

Rp
1(iξ) · Rp

2(iξ) > 0 (∀ ξ ≤ c/d)⇒ Attraction

Rp
1(iξ) · Rp

2(iξ) < 0 (∀ ξ ≤ c/d)⇒ Repulsion

In terms of permittivities and permeabilities:

�a(iξ)� �b(iξ)

µb(iξ)� µa(iξ)
Repulsion

Tuesday, March 8, 2011



Ideal attraction-repulsion

 Ideal attractive limit
ε1 = ∞ ε2 = ∞

Casimir (1948)

F

A
= +

π2

240

h̄c

d4
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Ideal attraction-repulsion

 Ideal attractive limit
ε1 = ∞ ε2 = ∞

Casimir (1948)

F

A
= +

π2

240

h̄c

d4

 Ideal repulsive limit
Boyer (1974)

ε1 = ∞ µ2 = ∞
F

A
= −

7

8

π2

240

h̄c

d4
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Ideal attraction-repulsion

µ = 1

 Real repulsive limit
Casimir repulsion is associated with strong 
electric-magnetic interactions. However, natural 
occurring materials do NOT have strong 
magnetic response in the optical region, i.e. 

 Ideal attractive limit
ε1 = ∞ ε2 = ∞

Casimir (1948)

F

A
= +

π2

240

h̄c

d4

 Ideal repulsive limit
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ε1 = ∞ µ2 = ∞
F

A
= −

7

8

π2

240

h̄c

d4
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Ideal attraction-repulsion

µ = 1

 Real repulsive limit
Casimir repulsion is associated with strong 
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occurring materials do NOT have strong 
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Metamaterials
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Quantum levitation with MMs?

“In theory the 
discovery could be 
used to levitate a 

person”
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Metamaterials
 Artificial structured composites with designer electromagnetic properties

 MMs are strongly anisotropic, dispersive, magneto-dielectric media.

 Negative refraction

 Perfect lens

 Cloaking

Veselago (1968), Smith et al (2000) 

Pendry (2000) 

Smith et al (2007) 

THz MMs: eg split ring resonators Optical MMs: eg nano-pillars

ε, µ < 036µm 200nm
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Effective medium approximation
We want to compute the Casimir force between a metallic plate and a MM. 
Let us assume a metallic plate in  is reasonably well described by a Drude 
response

For the MM the optical response is not 
so simple..... 

In the effective medium approximation 
(EMA) one describes the MM with an 
effective electric permittivity and an 
effective magnetic permeability.  This is 
an approximation valid when the MM is 
probed at wavelengths much larger that 
the average distance between the 
constituent “particles” of the MM.
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EMA: Electric response

 Close to resonance, the optical response can be modeled by a Drude-
Lorentz permittivity
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EMA: Magnetic response
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EMA: Drude-Lorentz responses

Metamaterial

εα(ω) = 1 −

Ω2

E,α

ω2
− ω2

E,α + iΓE,αω

µα(ω) = 1 −

Ω2

M,α

ω2
− ω2

M,α + iΓM,αω

Re ε2(ω) < 0 Re µ2(ω) < 0

Drude metal (Au)

ΩE,2/Ω = 0.1 ΩM,2/Ω = 0.3

ωE,2/Ω = ωM,2/Ω = 0.1

ΓE,2/Ω = ΓM,2/Ω = 0.01

ΩE = 9.0 eV ΓE = 35 meV

Infrared-optical frequencies

Typical separations 
d = 200 − 1000 nm

Ω/2π = 5 × 10
14

Hz

Close to the resonance, both       and         can be modeled 
by Drude-Lorentz formulas  

�(ω) µ(ω)
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Attraction-repulsion crossover 
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Drude background

 In some metallic-based MMs, there is a net 
conductivity due to the metallic structure, 
like the fishnet design on the right. 

ε(ω) = 1 − f
Ω2

D

ω2
− iωγD

− (1 − f)
Ω2

e

ω2
− ω2

e + iγeω

µ(ω) = 1 −

Ω2
m

ω2
− ω2

m
+ iγmω

f : filling factor

A Drude background is detrimental for 
Casimir force reduction or repulsion, 
since it results in an electric response 
much stronger than the magnetic one

�2(iξ)� µ2(iξ)
 Rosa, DD, Milonni, PRL 2008 
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EMA: correct model for  

The appearance of the      factor in the numerator is very important: ω2

Although close to the resonance this 
behaves in the same way as the Drude-
Lorentz EMA permeability, it has a 
completely different low-frequency 
behavior

µeff(iξ) < 1 < �eff(iξ)

Drude-Lorentz for permeability is wrong.  The correct expression that 
results in EMA from Maxwell’s equations is  

No Casimir repulsion!

µ

(Pendry 1999)
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Other Casimir MMs: chirality

The chirality of a MM is defined by the chirality of its unit cell

In a chiral medium, the constitutive relations mix electric and magnetic fields

dispersive chirality: κ(ω) =
ωkω

ω2 − ω2
κR + iγkω

Same-chirality (SC) materials: repulsion
Opposite-chirality (OC) materials: attraction  Soukoulis et al,  PRL 2009 
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Beyond EMA
Everything discussed so far is based on the assumption that the effective 
medium approximation (EMA) holds. We recall that this amounts to treating 
the MM in the “long-wavelength approximation”, i.e., field wavelengths much 
larger than the typical size of the unit cell of the MM.

How to calculate Casimir forces when EMA does not hold?
Can one trust predictions of Casimir repulsion with MMs based on EMA?

Homogeneous 
medium

Non-homogeneous 
medium

EMA beyond EMA
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k 

k’ 

Exact method: Scattering theory
The Casimir force still may be described 
in terms of reflections (scattering theory)

Symbolically, we may write the Casimir energy as

where

x

y

z

{a

{h

yy

{{{

h1
h3 h2
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Solving for the reflection matrix
The reflection matrix can be obtained with standard methods of numerical 
electromagnetism. One way is to solve Maxwell equations for the 
transverse fields

Assuming a two-dimensional periodic structure, we have

where 

Et(x, y) = eik·r
�

m,n

Em,n exp
�
i
2πn

Lx
x + i

2πm

Ly
y

�

Ht(x, y) = eik·r
�

m,n

Hm,n exp
�
i
2πn

Lx
x + i

2πm

Ly
y

�

�(x, y) =
�

m,n

�m,n exp
�
i
2πn

Lx
x + i

2πm

Ly
y

�

µ(x, y) =
�

m,n

µm,n exp
�
i
2πn

Lx
x + i

2πm

Ly
y

�
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Exact reflection matrix

One can then write the equations for the transverse fields as

Here H is a complicated matrix, that encapsulated the coupling of modes in 
the periodic structure.

By numerically solving this equation and imposing the proper boundary 
conditions of the field on the vacuum-metamaterial interphase (RCWA or 
S-matrix techniques), one can find the reflection matrix of the MM.
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2D periodic structures - finite T

 Davids, Intravaia, Rosa, DD, arXiv:1008.3580 (to appear in PRA) 
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Chiral MMs. I

103 times smaller!

Inhomogeneity

Sign of force ratio 
is shift-dependent

Configurations

Aligned Shifted

 (SC)

(OC)

Attractive, FOC > FSC in metamaterial limit

Unit Cell

Results

Chirality

Plot (FOC - FSC) / FOC:

No difference in 
metamaterial approx.

Force F in SC 
and OC configs.

z

 McCauley et al, PRB 2010
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Unit cell

Mesh used in
computations

Effect of inhomogeneity across displacements x

Conclusion

Opposite Chirality

Same Chirality

Chirality
well-defined

Total force relative to
parallel metal plates
“repulsive” effect (force reduction) of
chirality is one ten-thousandth of this!

In the regime where the
chiral metamaterial limit
is valid, the effect is too
small to be observable.

Chiral
Particle

Metamaterial
limit is valid

Metamaterial

z

x

 McCauley et al, PRB 2010

Chiral MMs. II
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Remarks: MMs and Casimir

 Several proposals for MM-based Casimir force use effective medium 
approximation. Their predictions have to be carefully checked since EMA 
breaks down for electromagnetic fluctuations with wavelengths comparable 
to metamaterial feature sizes. 

 Metamaterials offer an interesting possibility for Casimir force 
manipulation: engineered optical response, (maybe) broadband, dynamic 
control. 

 Casimir repulsion in vacuum-separated metallic/dielectric metamaterial 
structures seems hard to achieve. It is certainly impossible in geometries that 
are effectively one-dimensional (Casimir stability considerations).
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Disorder in quantum vacuum
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Localization of matter waves
  Waves propagating in disordered potentials undergo multiple scattering processes 

that strongly affect their usual diffusive transport and can result in localized states.

 Recently localization of a 1D BEC has been observed: in a speckle potential (Aspect 
group, 2008) and in a bi-chromatic optical potential (Inguscio group, 2008)
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CP for rough surface

Moreno, Messina, DD, Maia Neto, 
Reynaud, Lambrecht, PRL 2010
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BEC dynamics + weak disorder

 GP equation

short-times: interactions dominant, disorder negligible

large-times: disorder dominant, interactions negligible

 Weak disorder: VR(z0)� µ
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CP disorder correlation

γ(k) =
m

4�2Ek

� ∞

−∞
C(x) cos(2kx)dx Ek = �2k2/2m
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CP-induced localization

N = 100 87Rb atoms
σ = 0.25µm

LTF = 35µm

z0 = 1.5µm z0 = 1.0µm
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The thermal Casimir force

First observation of 
the thermal Casimir force

Sushkov (Yale), Kim (Seattle), DD (LANL), and Lamoreaux (Yale)

arXiv:1011.5219
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Torsional Pendulum Set-up

The correction voltage is the physical observable, and it is 
proportional to the force between the Casimir plates

An imbalance in capacitance is amplified and sent to a phase 
sensitive detector (PSD), which generates error signals.

SPID(d, Va)
A proportional integro-differential (PID) controller provides a 
feedback correction voltage                    to the compensator 
plates, restoring equilibrium.

Upgrade of Lamoreaux’s 1997 experiment

F ∝ (SPID + 9V )2 ≈ (9V )2 + 2SPID × 9V
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Typical Casimir Measurement

SPID(d, Va) = Sdc(d→∞) + Sa(d, Va) + Sr(d)

force-free component of 
signal at large separations

electrostatic signal in 
response to an applied 
external voltage

residual signal due to 
distance-dependent 
forces, e.g. Casimir

The electrostatic signal between the spherical lens and the plate, in PFA (          ), isd� R

Sa(d, Va) = π�0R(Va − Vm)2/βd β force-voltage conversion factor

This signal is minimized (           ) when               , and the electrostatic minimizing 
potential       is then defined to be the contact potential between the plates.

Sa = 0 Va = Vm

Vm
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“Parabola” measurements

SPID(d, Va) = S0 + k(Va − Vm)2

A range of plate voltages      is applied, and 
at a given nominal absolute distance the 
response is fitted to a parabola

Va

Calibration routine (Iannuzzi et al, PNAS 04) 

Fitting parameters

This procedure is repeated at decremental distances, from 7 um down to 0.7 um, 
completing a single experimental run. 

k = k(d)
Vm = Vm(d)
S0 = S0(d)

voltage-force calibration factor + absolute distance

distance-dependent minimizing potential

force residuals: electrostatic + Casimir + non-Newtonian gravity + ....

In the experiment                       is almost constant (0.2 mV variation in the whole range)Vm = Vm(d)
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Force Residuals
Residuals from Coulomb force obtained from the value of the PID signal at 
the minima of each parabola, 

In the experiment, these force residuals are too large to be explained just 
by the Casimir-Lifshitz force between the Au plates.

Plasma, T=300K

Plasma, T=0K

Drude, T=0K

Drude, T=300K
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Electrostatic Patch Effects

V2(x, y)
To compute the patch effect in the sphere-plane 
configuration we use PFA for the curvature effect                 
               but leave       arbitrary(d� R) kd

Fsp(d) = 2πR�Upp(d)� =
�0R

16

� ∞

0
dk

k2e−kd

sinh(kd)
[C1,k + C2,k]

Different models to describe surface potential fluctuations:

 C1,k = C2,k = V 2
0 for kmin < k < kmax  

In the limit of large patches               : (kd� 1) Fsp(d) = π�0R
V 2

rms

d

Sphere-plane geometry:

V (z = 0) = V1(x, y)

∇2V (x, y, z) = 0
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Understanding elec. residuals
We fit the data for the residual force at the minimizing potential with a 
force of equal to Casimir + patch effect

Fr(d) = FC(d) + π�0R
V 2

rms

d

Drude, T=300K Plasma, T=300K

Drude, T=0K
Plasma, T=0K
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Thermal Casimir force

F (T )
C (Drude) =

ξ(3)
8

RkBT

d2

Quality of fits:

Drude, T=300K

Drude, T=0K

Plasma, T=300K

Drude, T=300K

Plasma, T=0K

χ2
red

1.04
32
23
43

5.4

Vrms(mV )

3.0
4.0
3.6
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Remarks:

  Thermal correction to the Casimir force demonstrated. 

  Experiment rules out the plasma model in the separation range 0.7um 
to 7um, and confirms the Drude model

  Electrostatic residuals modeled as due to large electrostatic patches

(λP � d)F patches
r ∝ R

V 2
rms

d
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